56 research outputs found

    Decision Making in a Changing Environment

    Get PDF

    On the perfect reconstruction of the structure of dynamic networks

    Get PDF

    Dimension Reduction of Large AND-NOT Network Models

    Full text link
    Boolean networks have been used successfully in modeling biological networks and provide a good framework for theoretical analysis. However, the analysis of large networks is not trivial. In order to simplify the analysis of such networks, several model reduction algorithms have been proposed; however, it is not clear if such algorithms scale well with respect to the number of nodes. The goal of this paper is to propose and implement an algorithm for the reduction of AND-NOT network models for the purpose of steady state computation. Our method of network reduction is the use of "steady state approximations" that do not change the number of steady states. Our algorithm is designed to work at the wiring diagram level without the need to evaluate or simplify Boolean functions. Also, our implementation of the algorithm takes advantage of the sparsity typical of discrete models of biological systems. The main features of our algorithm are that it works at the wiring diagram level, it runs in polynomial time, and it preserves the number of steady states. We used our results to study AND-NOT network models of gene networks and showed that our algorithm greatly simplifies steady state analysis. Furthermore, our algorithm can handle sparse AND-NOT networks with up to 1000000 nodes

    Stochastic models of evidence accumulation in changing environments

    Get PDF
    Organisms and ecological groups accumulate evidence to make decisions. Classic experiments and theoretical studies have explored this process when the correct choice is fixed during each trial. However, we live in a constantly changing world. What effect does such impermanence have on classical results about decision making? To address this question we use sequential analysis to derive a tractable model of evidence accumulation when the correct option changes in time. Our analysis shows that ideal observers discount prior evidence at a rate determined by the volatility of the environment, and the dynamics of evidence accumulation is governed by the information gained over an average environmental epoch. A plausible neural implementation of an optimal observer in a changing environment shows that, in contrast to previous models, neural populations representing alternate choices are coupled through excitation. Our work builds a bridge between statistical decision making in volatile environments and stochastic nonlinear dynamics.Comment: 26 pages, 7 figure

    MSIS-Kadelka: On the uniqueness of network identification

    Get PDF

    Model-free Identification of Relevant Variables From Response Data

    Get PDF

    Identification of control targets in Boolean molecular network models via computational algebra

    Get PDF
    Motivation: Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. Experimentally, node manipulation requires technology to completely repress or fully activate a particular gene product while edge manipulations only require a drug that inactivates the interaction between two gene products. Results: This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network.Comment: 12 pages, 4 figures, 2 table
    corecore